
GHz-Wide Sensing and Decoding on Commodity Radios

Haitham Hassanieh Lixin Shi Omid Abari Ezzeldine Hamed Dina Katabi
Massachusetts Institute of Technology

Abstract– The goal of this paper is to make sensing and

decoding GHz of spectrum simple, cheap, and low power.

Our thesis is simple: if we can build a technology that cap-

tures GHz of spectrum using commodity Wi-Fi radios, it

will have the right cost and power budget to enable a va-

riety of new applications such as GHz-wide dynamic access

and concurrent decoding of diverse technologies. This vision

will change today’s situation where only expensive power-

hungry spectrum analyzers can capture GHz-wide spectrum.

Towards this goal, the paper harnesses the sparse Fourier

transform to compute the frequency representation of a

sparse signal without sampling it at full bandwidth. The pa-

per makes the following contributions. First, it presents Big-

Band, a receiver that can sense and decode a sparse spec-

trum wider than its own digital bandwidth. Second, it builds

a prototype of its design using 3 USRPs that each samples

the spectrum at 50 MHz, producing a device that captures

0.9 GHz — i.e., 6× larger bandwidth than the three USRPs

combined. Finally, it extends its algorithm to enable spec-

trum sensing in scenarios where the spectrum is not sparse.

1. INTRODUCTION

The rising popularity of wireless communication and the

potential of a spectrum shortage have motivated the FCC

to take steps towards releasing multiple bands for dynamic

spectrum sharing [8]. Last July, the President’s Council

of Advisors on Science and Technology (PCAST) recom-

mended the immediate release of 100 MHz of spectrum for

sharing, and advocated a plan for further releasing one GHz

of government-held spectrum [23]. Within just a fewmonths,

the FCC began the process of opening up 100 MHz be-

tween 3.5-3.6 GHz [7]. Dynamic sharing is a key pillar of

the FCC’s vision for these new spectrum bands, and is mo-

tivated by the fact that actual utilization of the spectrum is

sparse in practice. For instance, Fig. 1 from the Microsoft

Spectrum Observatory [17] shows that, even in urban areas,

large swaths of the spectrum remain underutilized. The 2012

PCAST report advocates dynamic sharing of much of the

currently under-utilized spectrum, creating GHz-wide spec-

trum superhighways “that can be shared by many different

types of wireless services, just as vehicles share a superhigh-

way by moving from one lane to another.”

Motivated by this vision, this paper explores the poten-

tial for GHz-wide spectrum sensing and reception on low-

power inexpensive devices. Making GHz-wide sensing (i.e.

the ability to detect occupancy) and reception (i.e. the ability

to decode) available on commodity radios enables multiple

 0

 20

 40

 60

 80

 100

 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

O
c
c
u

p
a

n
c
y
 %

Frequency (GHz)

Microsoft Observatory Seattle Monday 01/14/2013 10-11am

 0

 20

 40

 60

 80

 100

 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

O
c
c
u

p
a

n
c
y
 %

Frequency (GHz)

Figure 1—Spectrum Occupancy: The figure shows the average
(top) and maximum (bottom) spectrum occupancy at the Microsoft
spectrum observatory in Seattle on Monday January 14, 2013 dur-
ing the hour between 10 am and 11 am. The figure shows that be-
tween 1 GHz and 6 GHz, the spectrum is sparsely occupied.

applications:

• Realtime Spectrum Monitoring: Cheap GHz sens-

ing enables spreading thousands of small devices in a

metropolitan area for large-scale realtime spectrum moni-

toring. Today, the only way to monitor GHz of spectrum in

realtime is to use expensive, power hungry spectrum an-

alyzers. Commercial devices rely on sequential sensing,

hopping from one channel to the next, acquiring only tens

of MHz at a time [21, 20]. Sequentially scanning one GHz

of spectrum means each band is monitored for only 1% to

2% of the time, and hence it is fairly easy to miss short

lived signals (e.g., radar).

• GHz-wide Dynamic Access: Realtime GHz sensing en-

ables truly dynamic spectrum access, where secondary

users can detect short spectrum vacancies and leverage

them, increasing overall spectrum efficiency [3].

• Concurrent Decoding of Diverse Technologies: Beyond

sensing, the ability to decode signals in a GHz-wide spec-

trum on low-power cheap devices can enable new forms

of communications. A single receiver may decode many

concurrent transmissions occurring simultaneously in di-

verse parts of the spectrum. For example, a GHz receiver

can concurrently receive Bluetooth at 2.4 GHz, GSM at

1.9 GHz, and CDMA at 1.7 GHz. Alternatively, it may re-

ceive Wi-Fi at 5 GHz and WiMax at 5.8 GHz. Ideally, it

would do so with the same cost and power consumption

of a narrowband Wi-Fi receiver.

1

But how hard is it to build a GHz receiver? The key diffi-

culty in providing low-power cheap GHz sensing or receiv-

ing stems from the need for very high-speed ADCs, which

are both costly and power hungry. To acquire GHz of band-

width, the ADC needs a sampling rate higher than Giga sam-

ple per second (GS/s). An off-the-shelf 1 GS/s ADC costs

100’s of dollars and consumes more than 2 watts [22, 5]. In

contrast, a 50 MS/s ADC, like in Wi-Fi receivers, costs about

$2, and consumes an order of magnitude less power [5].

Our goal is to build a technology that uses the same hard-

ware as a Wi-Fi radio, which typically captures only tens of

MHz of digital bandwidth, and adapt it to capture a GHz-

wide bandwidth. Given the size, power, and cost of Wi-Fi

hardware, such a technology can enable GHz sensing and re-

ception capabilities for small embedded and mobile devices.

To achieve our goal, we harness recent advances in sparse

recovery, which permit signals whose frequency domain rep-

resentation is sparse to be recovered using only a small sub-

set of their samples. One may use compressive sensing to

acquire GHz of sparsely utilized spectrum without sampling

at GS/s [13, 19, 24]. Compressive sensing however does not

work with low-power commodity hardware because it re-

quires custom hardware that can perform complex analog

matrix multiplications and analog mixing at GHz speeds. As

a result, compressive sensing may consume as much power

as (and sometimes more than) high-speed ADCs [1]. In con-

trast, we exploit the sparse FFT algorithm [10, 9], which both

provides sparse recovery and outputs the frequency domain

signal, eliminating the need for additional processing.

Contributions: This paper makes contributions in the fol-

lowing two areas:

GHz-wide Sensing: The paper introduces BigBand, a

technology that can sense GHz of spectrum, using a few (3

or 4) off-the-shelf low-speed ADCs. Furthermore, it can do

so whether the spectrum is sparse or not. As such, the paper

makes two contributions in the sensing domain. First, it in-

troduces a new sparse FFT algorithm tailored for spectrum

acquisition. Specifically, past sparse FFT algorithms use a

sub-sampling pattern that picks samples that are spaced by

the inverse of the signal bandwidth. Thus, applying those

algorithms to spectrum sensing would still require a high-

speed ADC that samples the signal at GS/s. Instead, BigBand

introduces a new sparse FFT algorithm that uses only uni-

form samples obtained from a few low-speed ADCs. We an-

alytically prove that by using low-speed ADCs whose sam-

pling rates are co-prime, BigBand achieves the same running

time as the original sparse FFT, and uses the same number

of samples in expectation.

Our second sensing contribution extends BigBand to deal

with scenarios in which the spectrum is not sparse. The basic

idea is simple: instead of taking the FFT over the time signal,

we take the FFT over changes in the time signal. Since only

a small fraction of the spectrum is likely to change its occu-

pancy over short intervals of a few milliseconds, the FFT of

“changes” is sparse and we can apply our algorithm to it.1

GHz-wide Receiving: BigBand can do more than spec-

trum sensing – the action of detecting occupied bands. It can

also decode the signal. BigBand presents the first receiver

that decodes a sparse signal whose bandwidth is wider than

its own digital bandwidth, using commodity low-rate ADCs,

without using any high speed sampling or mixing. This is in

contrast to recent attempts to build sparse recovery receivers

using compressive sensing, which need custom ADCs with

complex analog hardware and GHz analog mixing [24, 13].

Implementation and Results:We have built a working pro-

totype of BigBand using USRP radios. Our prototype uses

three USRPs, each of which can capture 50 MHz bandwidth

to produce a device that captures 0.9 GHz –i.e., 6× larger

bandwidth than the digital bandwidth of the three USRPs

combined. An empirical evaluation of this prototype pro-

vides the following results:

• BigBand can sense a sparse 0.9 GHz frequency band in

real time. It can identify occupied frequencies with an er-

ror rate less than 2% for SNRs larger than 3 dB, and an

error rate less than 0.5% for SNR larger than 10 dB. For

sparsity of 5%, its false positive rate is 2% and its false

negative rate is 0.2%.

• We use BigBand to sense the spectrum between 2 GHz

and 2.9 GHz, a one-GHz stretch used by diverse technolo-

gies [17]. Our outdoor measurements reveal that, in our

metropolitan area,2 the above band has an occupancy of 2–

5%. These results are in sync with similar measurements

conducted at other locations [17].

• BigBand’s extended version can identify changes in oc-

cupancy of non-sparse spectrum. For any spectrum oc-

cupancy up to 95%, BigBand can discover the changes

in spectrum occupancy and find unoccupied frequencies

with less than 1% false negatives and 2% false positives,

as long as at most 1% of the spectrum changes its occu-

pancy every millisecond.

• BigBand can correctly decode sparse signals in a 0.9 GHz

band. Specifically, it can decode up to 30 transmitters that

are simultaneously frequency hopping in a 900 MHz band

with less than 3.5% packet loss.

2. RELATED WORK

Related work falls in the following areas.

Spectrum Sensing: Most of the earlier work on spectrum

sensing focuses on narrowband sensing [27, 2, 18]. Narrow-

band sensing techniques include detecting the signal’s en-

ergy [2], its waveform [27], its cyclostationality [11], or its

power variation [18]. In contrast, our work focuses on wide-

band spectrum sensing, where the challenge is the need for

high speed ADCs.

1The above gives the intuition. However, technically, we compute
changes in the signal power, not the actual signal(see §5 for details).
2Place name is removed for anonymity.

2

A recent work on wideband sensing called Quick-

Sense [26] recognizes it is inefficient to sequentially scan

a wideband. To speed up the scanning process, QuickSense

moves the scanning to the analog domain using cheap ana-

log filters and energy detectors. It then uses a hierarchical

search algorithm to minimize the number of scans. BigBand

differs from QuickSense in two main ways: First, BigBand

can decode the signal (obtain the I and Q components) as

opposed to only detecting spectrum occupancy. Second, for

highly utilized spectrum (i.e. not sparse), QuickSense con-

verges to sequentially scanning the spectrum whereas Big-

Band’s differential algorithm provides a fast sensing mecha-

nism for non-sparse spectrum.

BigBand also complements the geo-location database re-

quired by the FCC for identifying the bands occupied by pri-

mary users (e.g., the TV stations in the white spaces). The

database, however, has no information about frequencies oc-

cupied by secondary and unlicensed users in the area. Also,

due to the complexity of predicting propagation models, the

database provides only long-term predictions, and can be in-

accurate, particularly with dynamic access patterns [8, 3].

Also related to our work are past measurement studies of

spectrum occupancy [17, 16, 4]. The resulting data reveals

that apart from the bands below 1 GHz and few bands around

2.4 GHz, the spectrum is sparsely utilized. Bands proposed

for re-purposing and spectrum sharing are typically highly

under-utilized, like those around 3.5 GHz, above 4.2 GHz,

and between 1675 MHz and 1850 MHz [7, 23]. Despite

these attempts at measuring the spectrum, the data is fairly

scarce. In an attempt to address the problem, a past pro-

posal advocated that researchers in universities and research

labs volunteer time-slots on their spectrum analyzers, which

could be coordinated and used for real-time spectrum mon-

itoring [12]. BigBand shares the objective of enabling large

scale spectrum measurements. However it addresses the is-

sue by making GHz sensing cheaper and more accessible.

Sparse Recovery: The closest to our work are wideband

sparse recovery techniques based on compressive sens-

ing [13, 19, 24, 25]. However, since compressive sensing

requires random projections, these techniques end up using

complex analog hardware to avoid using an ADC that sam-

ples at Nyquist rate. This includes custom hardware that can

perform analog matrix multiplication and analog mixing at

Nyquist rates [13, 24]. Further, some of these hardware im-

plementations end up consuming as much power as an ADC

that samples at Nyquist rate [1].

Finally, our work builds on earlier theoretical work on

sparse Fourier transform [10, 9]. However, as explained

in §1, the original sparse FFT algorithms require random

sampling and are not suitable for cheap low power spectrum

sensing and signal recovery.

3. ILLUSTRATIVE EXAMPLES

We start with two illustrative examples that give an intu-

ition of how BigBand’s sparse FFT algorithm works. In these

Subsample

1 2 3 4 5 7 8 9 106

1 2 3 4 5

Alias

FFT

FFT

Time Frequency

Figure 2—The correspondence of sub-sampling and aliasing:
Sub-sampling the time domain signal in the top left to half the num-
ber of samples results in the signal in the bottom left. In the Fourier
domain, the FFT of the sub-sampled signal is an aliased (folded)
version of the FFT of the initial signal; namely, samples 1 and 6 in
the top right signal add into sample 1 in the aliased signal in the
bottom right, samples 2 and 7 into sample 2, etc.

examples and throughout the paper, we will refer to the value

of a frequency by Xf , and its position in the spectrum by f .

Also, for clarity, in these examples we assume the value of

unused frequencies is zero, i.e., we ignore the noise (Our re-

sults in §8 naturally include signal noise). We can then refer

to the used frequencies as the non-zero frequencies.

Before introducing our sampling algorithm, we remind the

reader of a basic property of the Fourier transform that we

rely on in our design: Sub-sampling a signal in the time do-

main causes aliasing in the frequency domain. Fig. 2 illus-

trates this property.

3.1 One Non-Zero Frequency

Let us consider a very simple case where we have a sig-

nal of size N but only one frequency f has a non-zero value

Xf , as shown in Fig. 3(a). For simplicity, we chose N = 28

and f = 11. In general, to compute the frequency represen-

tation of this signal, one would take an FFT over N time

samples –i.e., one needs an ADC that can take N = 28 sam-

ples per time unit.3 Say however that we are allowed only a

low-speed ADC that takes 4 samples every time unit. How

can we correctly compute the full spectrum of size N = 28?

The low-speed ADC sub-samples the signal in the time

domain. As described earlier, this causes aliasing in the fre-

quency domain [15]. We will refer to aliasing as Bucketiza-

tion, since taking the FFT over the 4 time samples returned

by our low-speed ADC causes the 28 frequencies to hash

into 4 buckets, such that the value of each bucket is the sum

of the 7 frequencies that hash to that bucket, i.e., frequency f

hashes to bucket i = f mod 4, as shown in Fig. 3(b).

Now, lets try to reconstruct the 28-point spectrum from the

4 buckets. Non-zero frequency f = 11 hashes to bucket i =
11 mod 4 = 3, and hence only this bucket will have a non-

zero value as shown in Fig. 3(b). Further, the value of this

bucket bi will be equal to the value of the non-zero frequency

Xf since all other frequencies that hash to this bucket are

zero. Thus, by computing the values of 4 buckets, we can

find the value of the non-zero frequency.

3Throughout this paper when we refer to a sample, we mean a com-
plex sample that is both I and Q. Thus, the Nyquist criterion implies
that a bandwidth of N Hz requires N complex samples per second
(real and imaginary samples).

3

�Ù

r E=3

�Ù

�0 L
t�è�B�ì

tz
�Bucketize Estimate

(a)�tz-Point Frequency Spectrum: �
(1 non-zero frequency B L ss)

(b)�v Frequency Buckets:

B L ss hashes to bucket E L u

(c) Estimation of frequency

position B using phase rotation

�Ù

B L ss tyr

Figure 3—Estimating one non-zero frequency: (a) Sub-sampling the time signal using a low rate ADC to get 4 samples and taking the
4-point FFT bucketizes the 28 frequencies to 4 buckets. (b) Non-zero frequency 11 is hashed to bucket 3 = 11 mod 4 which allows us to
estimate its value Xf (c) Repeating the bucketization with a time shift τ , rotates the phase of Xf by 2πf τ/N which allows us to estimate f .

Although bucketization allows us to find the value of the

non-zero frequency, we still do not know its frequency po-

sition f , since there are multiple frequencies mapped to the

same bucket. To compute f , we leverage the phase-rotation

property of the Fourier transform, which states that a shift

in time translates into phase rotation in the frequency do-

main [15]. Specifically, say that we repeat the whole process

of bucketization, after shifting the input signal by τ samples.

Then, the phase of Xf , and consequently the phase of the

bucket it hashes to, is going to change by:

∆φ =
2π · f · τ

N
, and hence f =

∆φ · N
2πτ

. (1)

Thus, we can figure out the position f of the non-zero fre-

quency by looking at how much its value rotates after a time

shift as shown in Fig. 3(c). We refer to the process of finding

the positions of non-zero frequencies as the Estimation step.

The example above outlines the basic ideas underlying

BigBand’s approach for computing a wideband sparse spec-

trum using low-speed ADCs. Namely, we alias the spectrum

into a small number of buckets, ignore the empty buckets

(buckets whose value is close to zero) and then estimate the

frequencies in the non-empty buckets by exploiting the phase

rotation rule in Eq. 1. The above approach works if we have

no collisions, i.e., no two non-zero frequencies fall into the

same bucket. The next example provides the basic idea for

resolving collisions.

3.2 Three Non-Zero Frequencies

Let us now consider a slightly more complex case, where

we have three non-zero frequencies, f1 = 11, f2 = 19, and

f3 = 25, as shown in Fig. 4. In this case, if we perform the

above bucketization, frequencies f1 and f2 will hash to the

same bucket since 11 mod 4 = 19 mod 4 = 3. We refer to

this as a collision of non-zero frequencies. A collision pre-

vents us from finding the value of each of the non-zero fre-

quencies. It also prevents us from estimating the positions

of the two frequencies f1 and f2 since the phase rotation of

the bucket is no longer proportional to f1 or f2. Of course,

we can still find the position and value of f3 using the above

method because this frequency does not suffer from a colli-

sion.4 However to reconstruct the full spectrum, we need to

resolve the collision. So, how can we resolve collisions?

4Note that we need to be able to detect which buckets have a col-
lision and which don’t so that we can estimate the frequencies that
do not collide. In §4.3, we describe how to detect collisions.

B7=25

�ÙÚ E �ÙÛ

�Ù.

B6=19r

Bucketize

(a)�tz-Point Frequency Spectrum: �
(3 non-zero frequencies)

(b)�v Buckets:

B5 and B6 collide

�ÙÚ

B5=11

r

(c)�y Buckets

B5 and B7 collide

�ÙÛ

ty

r 3�Ù/

�Ù/

�ÙÚ E �ÙÜ

6

Bucketize

Figure 4—Estimating 3 non-zero frequencies: (a) Frequencies
f1, f2, f3 are occupied. (b) Hashing into 4 buckets results in f1 and f2
colliding the same bucket which prevents us from estimating their
values and positions. We can estimate f3. (c) Hashing into 7 buckets,
f1 and f3 collide but not f2. We can estimate f2 and subtract it from
the bucket where it collided with f1 which allows us to estimate f1.

To resolve the collision, we need to repeat the bucketiza-

tion in a way that guarantees that the colliding frequencies do

not collide again. Say that we are given a second low-speed

ADC, which takes 7 samples per time unit. We can repeat the

above bucketization but this time we bucketize into 7 buck-

ets and a frequency f is hashed into the bucket f mod 7. In

this case, non-zero frequency f1 = 11 will hash to bucket 4,

f2 = 19 to bucket 5, and f3 = 25 to bucket 4. This time, f1
and f3 collide, but f2 does not collide, as shown in Fig. 4(c).

Now, we have two sets of buckets (shown in the second

column of Fig. 4), which are the 4 buckets generated by tak-

ing an FFT over the output of the first low-speed ADC, and

the 7 buckets generated by taking an FFT over the output of

the second low-speed ADC. Each set of buckets has a colli-

sion. Yet together the two sets of buckets can be used to re-

solve both collisions. Specifically, we compute the value and

position of frequency f3 from the first bucketization, where

it does not collide (using the same approach we used above

when we had only one non-zero frequency). Similarly, we

compute the value and position of frequency f2 from the sec-

ond bucketization, where it does not collide. After resolving

f2, we go back to the first bucketization and subtract its value

Xf2 from the bucket 3 where it collides.5 This leaves only fre-

quency f1 in bucket 3, which can now be resolved. Thus, the

combination of the two bucketizations using two low-speed

ADCs allows us to reconstruct the full spectrum.

5Note that we subtract Xf2 from the bucket and Xf2e
i2πf2τ/N from

the time shifted version of the bucket.

4

But how do we guarantee that the same pair of frequen-

cies that collided in the first bucketization does not collide

again in the second bucketization? We can do so because

the numbers of buckets across bucketizations (4 and 7) are

co-prime. We know from modular arithmetic that for any

two integers f1 and f2, we have, f1 mod 7 = f2 mod 7 and

f1 mod 4 = f2 mod 4 if and only if f1 mod 28 = f2 mod 28.

Hence, using these co-prime bucketizations, two distinct fre-

quencies in an N-wide spectrum will never collide twice.

These examples give an intuition of how we can find the

values and positions of non-zero frequencies. In the next sec-

tion, we generalize these ideas to any number of non-zero

frequencies and show how these ideas can be implemented

efficiently on off-the-shelf hardware.

4. BIGBAND

BigBand is a receiver that can capture a sparse spectrum

wider than its own bandwidth, i.e., it can recover a sparse sig-

nal with a significantly lower sampling rate than the Nyquist

criterion. Thus, BigBand can do more than spectrum sensing

– the action of detecting occupied bands. BigBand provides

the details of the signals in those bands (I’s and Q’s of wire-

less symbols), which enables decoding those signals.

BigBand presents a new sparse FFT algorithm tailored for

spectrum acquisition using low speed ADCs. In this section,

we describe in details BigBand’s sparse FFT algorithm and

in §6 we outline its similarities and differences to the original

sparse FFT algorithm.

At a high-level, BigBand operates in two key steps: buck-

etization and estimation. In the bucketization step, BigBand

hashes the frequencies in the spectrum into buckets. Since

the spectrum is sparse, many buckets will be empty and

can be discarded. BigBand then focuses on the non-empty

buckets, and computes the values of the frequencies in those

buckets in what we call the estimation step. Below we de-

scribe both steps in detail.

4.1 Frequency Bucketization with Co-prime Aliasing

Bucketization has to satisfy the following requirements:

1. It needs to hash the frequencies into buckets, i.e., every

bucket has the same number of frequencies, every fre-

quency falls in a unique bucket, and the value of the bucket

is the sum of the values of frequencies that hash to it.

2. It should admit sub-Nyquist sampling, i.e., it should oper-

ate on a small number of time samples, such that the num-

ber of samples per second is proportional to the number of

occupied frequencies not the total bandwidth.

3. It should be possible to implement sub-sampling with

purely low-rate ADCs.

4. It should be possible to repeat the bucketization but with

different frequencies sharing the same bucket so that we

can resolve collisions.

BigBand uses a bucketization scheme based on co-prime

aliasing filters which satisfy the above requirements. Below

we explain how aliasing filters satisfy requirements 1, 2, 3

and how making the filters co-prime satisfies requirement 4.

So what are aliasing filters? Recall the following basic

property of the Fourier transform: sub-sampling in the time

domain causes aliasing in the frequency domain. Formally,

let x be a discrete time signal of length N, and X its fre-

quency representation. Let x′ be a subsampled version of x,

where x′i = xi×N/B and B divides N. Then, X′, the FFT of x′

is an aliased version of X, i.e.:

X′

f =

N/B−1
∑

j=0

Xf+jB. (2)

Thus, aliasing is a form of bucketization in which frequen-

cies equally spaced by an interval B end up in the same

bucket, i.e., frequency f will hash to bucket i = f mod B.

Further, the value in each bucket is the sum of the values of

the frequencies that hash to the bucket as shown in Eq. 2.

Aliasing directly satisfies requirements 1, 2, and 3. The

only tricky part is to satisfy requirement 4, which translates

to identifying different aliasing filters that randomize how

frequencies hash into buckets. To do so, we use aliasing fil-

ters with different sampling intervals. In this case, each buck-

etization requires sub-sampling at a different rate, which can

be accomplished with multiple low-rate ADCs.

So how should we choose the different sampling inter-

vals of the aliasing filters? As we have seen in the example

in §3.2, choosing sampling intervals which are co-prime (4

and 7) randomizes the bucketization and prevents the same

frequencies from colliding in both filters. Therefore, the best

choice is co-prime aliasing filters. Said differently, the filters

have B1 = N/p1 and B2 = N/p2 buckets where p1 and p2 are
co-prime. In the Appendix, we prove the following lemma:

LEMMA 4.1. Given two aliasing filters with B1 = N/p1
and B2 = N/p2 buckets such that p1 and p2 are co-prime

integers that divide N, then for any two frequencies f 6= f ′,

we have: f ′ = f mod B1 → f ′ 6= f mod B2.

The lemma states that given the above aliasing filters, any

two frequencies that collide in the first bucketization will

not collide in the second bucketization and hence this choice

of bucketization satisfies requirement number 4. Hence, co-

prime aliasing filters satisfy our four requirements.

Two important points are worth clarifying:

• The number of frequencies that hash to each bucket needs

to be co-prime and not the total number of buckets, i.e. p1
and p2 must be co-prime but not necessarily B1 and B2. In

the example in §3.2, it happens that B1 = 4 and B2 = 7

are co-prime and p1 = 7 and p2 = 4 are also co-prime

since N = 28.

• How does this translate into ADC sampling rates? The

best choice of aliasing filters suggests that for a bandwidth

BW, we should use two ADCs that sample at rates BW/p1
and BW/p2 where p1 and p2 are co-prime. Of course,

ADCs might be not readily available at any sampling

5

Term Definition

BW total GHz bandwidth we wish to reconstruct
T total sampling time of the signal, FFT window time
N size of the FFT, N = T × BW
K sparsity : number of non-zero frequency coefficients
B number of buckets
p number of frequencies that hash to a bucket, p = N/B
f frequency index (0 ≤ f < N)
τ time shift of the signal in number of samples
x time signal of length N sampled at a rate of BW
X frequency domain signal, X = FFT(x)

Table 1—Terms used in the description of BigBand.

rate. However, one can always find a variety of off-the-

shelf ADCs that can recover a bandwidth slightly higher

but close enough to the desired bandwidth. For example,

to recover a 1 GHz bandwidth, we can use a 42 MHz

ADC [5] along with a 50 MHz ADC. The combination

of these two ADCs can capture a bandwidth of 1.05 GHz.

This is because 42 MHz = 1.05 GHz/25 and 50 MHz

= 1.05 GHz/21 where 21 and 25 are co-prime.

4.2 Frequency Estimation with Phase Rotation

The bucketization step allows us to separate the occupied

frequencies into their own buckets with the potential of some

buckets having frequency collisions. In the next section, we

will present a mechanism to detect buckets with collisions.

For the time being, let us focus on the buckets that do not

have collisions and estimate the value and the position of the

occupied frequency, i.e., Xf and the corresponding f .

In the absence of a collision, the value of the occupied

frequency is the value of the bucket. Since many frequencies

fall into the bucket, it is not clear which frequency f is asso-

ciated with this value. However, as explained in the example

in §3.1, we can estimate the position of the frequency using

phase rotation. Specifically, we repeat the bucketization af-

ter a time shift τ . Since a shift in time translates into phase

rotation in the frequency domain, the value of the bucket of

interest changes from Xf to Xf · ei2π·f ·τ/N . Hence, using the

change in the phase of the bucket, we can estimate our fre-

quency of interest and we can do this for all buckets that do

not have collisions. This implies that for each of the two co-

prime sampling rates, the system needs to use two ADCs one

of which is sampling after a time shift of τ , i.e. BigBand uses
4 ADCs in total. Note however that the two co-prime ADCs

and their shifted versions need not have the same shift τ .
To be able to implement the above frequency estimation,

we need to answer the following two questions:

1. How can we sample the signal with a shift? This is fairly

simple as we can connect the antenna to the two ADCs us-

ing different delay lines (which is what we do in our imple-

mentation). Alternatively, we can use different delay lines to

connect the clock to the two versions of the ADC.

2. What values of τ are suitable? It is important to note that

not all values of τ will allow us to uniquely estimate mul-

tiple frequency positions. This is because the phase wraps

around every 2π. For example, say that we use a shift of

τ = 2 samples out of N where N is the size of the sparse

FFT, and consider two frequencies f and f ′ = f +N/2. After
a shift by τ , the phase rotation of f is ∆φ(f) = 2π · f · 2/N.
The phase rotation of f ′ is ∆φ(f ′) = 2π · (f + N/2) · 2/N
mod 2π = 2π · f · 2/N. Thus, with a time shift of 2 sam-

ples, the phase shifts observed for two frequencies f and f ′

separated by N/2 are the same, and BigBand will be unable

to disambiguate between them. BigBand can use a shift of

τ = 3 to disambiguate between f and f + N/2, but this does
not address the situation completely since a shift of τ = 3 will

be unable to disambiguate frequencies separated by N/3. In
general, we need to pick a τ that gives a unique mapping

between the phase rotation and the frequencies, independent

of the separation between the frequencies. Formally, for all

separations s between the frequencies (1 ≤ s ≤ N-1), we

need to ensure that sτ/N is not an integer. We can ensure

this property for either τ =1, or any τ invertible modulo N.

4.3 Detecting Frequency Collisions

So far we have assumed that we know which buckets have

a single occupied frequency and which buckets have a col-

lision. However, we need to be able to detect collisions in

order to avoid estimation errors.

BigBand uses the phase rotation property of the Fourier

transform to determine if a collision has occurred. Specifi-

cally, if there is no collision and the only occupied frequency

is f , then the values b and b(τ) of a bucket in the two time-

shifted bucketizations are related as b(τ) = bei2π·fτ/N . In

particular, these values only differ by a phase shift, and their

magnitudes are equal. On the other hand, consider the case

where there is a collision between, say, two frequencies f and

f ′. Then the value, b, in the bucket before time-shifting can

be written as Xf + Xf ′ . After time-shifting by τ , the value

of the bucket, b(τ) = Xf · ei2π·fτ/N + Xf ′ · ei2π·f
′τ/N . As

described in §4.2, the two phase shifts for f and f ′ are dif-

ferent by choice of τ , and hence the magnitudes of b and

b(τ) are different. Thus, we can determine whether there is

a collision or not by comparing the magnitudes of the buck-

ets before and after time-shifting, and verifying whether they

are the same or not.

4.4 BigBand’s Sparse FFT Algorithm

To put the pieces together, Algorithm 1 provides a pseu-

docode for BigBand’s sparse FFT algorithm. BigBand pro-

ceeds as follows: after bucketization, it estimates the occu-

pied frequencies that did not collide in the first bucketiza-

tion. It then subtracts the values of these frequencies from

the buckets they hashed to in all 4 bucketizations and esti-

mates the remaining frequencies from the second bucketiza-

tion. BigBand iterates between the two bucketizations until

all frequencies have been recovered. In the Appendix, we

prove the following theorem about the algorithm.

THEOREM 4.2. For sparsity K = c
√
N and p1, p2 =

Θ(
√
N), BIGBAND runs in time O(K logN), uses O(K)

6

1 Pseudocode for BigBand

PROCEDURE: BIGBAND(x)
X← 0
B1 ← N/p1
B2 ← N/p2
✄ Bucketization: FFT of sub-sampled and shifted signal
b1 ← FFT(x[0], x[p1], · · · , x[N − p1])
b2 ← FFT(x[0], x[p2], · · · , x[N − p2])

b̃1 ← FFT(x[τ1], x[τ1 + p1], · · · , x[τ1 + N − p1])

b̃2 ← FFT(x[τ2], x[τ2 + p2], · · · , x[τ2 + N − p2])
✄ Estimation: Iterate between filters
repeat

for u ∈ {1, 2} do
for non-empty bu

i do
if no collision then

f ← (∠b̃u
i − ∠bu

i) · N/(2π · τu)
Xf ← bu

i

Subtract Xf from b1, b̃1, b2, b̃2

until all buckets are empty or log(K) iterations
return X

samples and returns the correct result with probability at

least 1− O(α) for some small enough constants α and c.

4.5 Sparsity Range

Since BigBand is a sparse FFT algorithm, it is natural to

ask what sparsity range it works for. BigBand uses only two

aliasing filters, there is a small probability that it fails to re-

solve collisions, and this limits the sparsity that it can handle.

BigBand will fail to resolve a collision when there is a

deadlock, i.e., during the estimation step in Algorithm 1, it

fails to find any non-empty bucket without a collision. For

example, say we have four frequencies (f1, f2, f3, f4) such that
in the first aliasing filter f1 collides with f2 and f3 collides

with f4 whereas in the second aliasing filter f1 collides with

f3 and f2 collides with f4. Then, we will not be able to resolve

these collisions. The probability that a deadlock occurs de-

pends on how sparse the spectrum is.

In order to support a denser spectrum, we need to add a

third aliasing filter that is co-prime with the first two. This

will allow us to resolve deadlocks of size 4. However, with 3

aliasing filters, one can have deadlocks of size 8 or larger,

and more generally, with m aliasing filters, one can have

deadlocks of size 2m or greater. Thus, intuitively, the like-

lihood of a deadlock reduces with the number of co-prime

filters, as the deadlock needs to involve exponentially more

frequencies.

Fig. 5 shows the results of a simulation that reports the

fraction of occupied frequencies in a deadlock as a function

of the sparsity of the spectrum for two, three or four co-prime

aliasing filters. As the figure shows, for a fixed number of

aliasing filters, increasing the sparsity reduces the likelihood

that the occupied frequencies are in a deadlock. The figure

also shows that each additional co-prime aliasing filter can

significantly reduce the number of frequencies in a deadlock

and allow BigBand to support higher spectrum usage.

5. SENSING NON-SPARSE SPECTRUM

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100P
e

rc
e

n
ta

g
e

 o
f

N
o

n
-z

e
ro

 F
re

q
.

 i
n

 D
e

a
d

lo
c
k

Percentage of Spectrum Usage (Sparsity)

2 Co-prime filters
3 Co-prime filters
4 Co-prime filters

Figure 5—BigBand’s Sparsity Range: We ran a simulation to
check the percentage of frequencies which are in a deadlock and
hence will not be recovered by BigBand versus the sparsity. The
figure shows that with each additional co-prime filter we can signif-
icantly reduce the frequencies in deadlock and increase the sparsity
range for which BigBand can recover all frequencies.

B=12

B=12r ty

r ty

(a)�Spectrum at time P L r

(b)�Spectrum at time P L 69

Bucketize

Bucketize

r 3 r 6

(c)�Bucketize with co-prime

aliasing filters and subtract

r 6r 3

Vote

f 1 2 Vote

0 1

1 0

2 0

3 0

4 1

5 1

6 0

7 0

8 1

9 0

10 0

11 0

12 2

13 0

14 0

15 0

16 1

17 0

18 0

19 1

20 1

21 0

22 0

23 0

24 1

25 0

26 1

27 0

(d)�Voting Table

r 3 r 6

Figure 6—Sensing one change in non-sparse spectrum: (a) f=12
is occupied at t = 0. (b) f=12 is empty at t = TW. (c) Bucketize
the spectrum at t = 0 and t = TW using co-prime aliasing filters
and subtract the two bucketizations to discover changing buckets.
Changes are sparse. (d) Each co-prime filter votes for the frequen-
cies that hash to a changing bucket. Only f=12 gets two votes.

In this section, we extend BigBand’s algorithm to deal

with sensing a non-sparse spectrum. The key idea is that

although the spectrum might not be sparse, the changes in

spectrum usage are sparse i.e. over short intervals, only few

frequencies are freed up or become occupied. We refer to

this as differential sparsity. To see how differential sparsity

allows D-BigBand to sense a non-sparse spectrum we will

start with an example.

5.1 Illustrative Example

In this example, we are going to assume that the state of

any frequency can either be occupied or empty. However, if

a frequency is occupied, its value does not change over time.

We will later explain how to deal with the fact that values

of occupied frequencies change over time. Let us consider

the case where one frequency f = 12 which was occupied

becomes unoccupied after time TW as shown in Fig. 6(a,b).

Now if we bucketize the spectrum, all buckets will be non-

empty and will have collisions. Hence, we cannot use the

previous algorithm. However, since frequency f = 12 be-

7

came empty after time TW, the power in the bucket it hashes

to will become lower after time TW. Further, since it is the

only frequency that changed state, only the power of that

bucket changes. Hence if we subtract the bucketization at

time TW from that at time 0, we can find which buckets have

frequencies that changed state as shown in Fig. 6(c).

Subtracting the bucketizations, allowed us to bucketize the

“changes” in the spectrum. However, we still need to esti-

mate which frequency is the one that changed state out of the

frequencies that hash to the bucket. To do this, we introduce

a new estimation procedure based on voting and co-prime

aliasing filters. Both at time 0 and time TW, we perform two

bucketizations; one using an aliasing filter with four buck-

ets and another using an aliasing filter with seven buckets as

shown in Fig. 6(c). Now every frequency that is hashed into

a bucket that changed gets a vote. However, since the filters

are co-prime, frequencies that hash to the same bucket as f

in the first filter and get a vote, will hash to a different bucket

in the second filter and will not get a second vote. Hence,

only frequency f = 12 will get two votes which allows us to

estimate its position as shown in Fig. 6(d).

The above example gives an intuition of how we can lever-

age the sparsity of changes in the spectrum to discover which

frequencies become occupied and which become empty.

However, to be able to generalize the above approach, we

need to first address the following issues:

• Since the values of the occupied frequencies change

after a time TW, the values of the buckets will change

even if the state of the frequencies that hash to them did

not change. Hence, we cannot simply subtract the two

bucketizations. However, since FCC typically requires

wireless transmissions to be whitened over time, the

average power of a bucket will not change if the state of

frequencies that hash to it does not change. To estimate

the average power over a time window TW, D-BigBand

performs the bucketization multiple times and averages

the power of the buckets. The longer the time window

TW, the better the estimate of the average power of each

bucket. However, the longer the time window, the more

frequencies change their state. In §8, we show that a time

window TW = 1 ms allows us to properly detect changes

in the buckets.

• If there is more than one change in the spectrum, we will

need to use more than two co-prime aliasing filters. For

example, 4 filters allow D-BigBand to support a differen-

tial sparsity of Kd = o(
√
N) where Kd is the number of

frequencies whose state has changed.6

5.2 D-BigBand

D-BigBand’s algorithm works as follows. Over a time

window TW, D-BigBand bucketizes the signal multiple

6This is because, given four aliasing filters with number of buckets
N/p1,N/p2,N/p3,N/p4 where p1, p2, p3, p4 are prime, the proba-

bility that voting makes a mistake is bounded by K4
d/N

2.

times7 for each of the four co-prime aliasing filters and cal-

culates the average power in the bucket over this time win-

dow. It then repeats these bucketizations over the next time

window and subtracts the average power of the buckets in the

first time window from that in the second time window. Af-

ter that each filter votes for frequencies that hash to buckets

where the power changed. Frequencies that get four votes are

picked as the frequencies whose state has changed. Hence,

based on our knowledge of the spectrum occupancy during

the first time window, we can discover the spectrum occu-

pancy during the second time window.

As with any differential system, we need to initialize the

state of spectrum occupancy. However, an interesting prop-

erty of D-BigBand is that we can initialize the occupancy of

each frequency in the spectrum to unknown. This is because,

when we take the difference in power we can tell whether

the frequency became occupied or it became empty. Hence,

once the occupancy of a frequency changes, we can tell its

current state irrespective of its previous state. This avoids the

need for initialization and prevents error propagation.

6. BIGBAND VS SFFT

In this section, we describe the differences between Big-

Band and the sparse FFT algorithm (sFFT) in [10].

BigBand is designed and proved for the typical case of

spectrum usage where the occupied frequencies are ran-

domly distributed (with sparsity K = O(
√
N)), whereas

sFFT is proved for a worst case distribution of occupied fre-

quencies (with sparsity K = o(N)).
Since BigBand is designed under fewer constraints than

sFFT, it can be implemented much more efficiently than

sFFT. Most importantly, BigBand works with off-the-shelf

low speed ADCs. In contrast, sFFT, similar to compressed

sensing, requires custom ADCs that can randomly sub-

sample the signal with inter-sample spacing as small as the

inverse of the signal bandwidth. Additionally, BigBand per-

forms the bucketization step only 4 times, whereas sFFT

needs to perform O(logK) bucketizations. Finally, Big-

Band’s differential scheme, D-BigBand, enables the detec-

tion of occupied and empty frequencies for any level of spec-

trum usage, whereas sFFT is designed for a sparse spectrum.

7. A USRP-BASED IMPLEMENTATION

We build a prototype of BigBand using USRP software

radios [6]. We use three USRP N210 radios with the SBX

daughterboards, which can operate in the 400 MHz to

4.4 GHz range. The clocks of the three USRPs are synchro-

nized using an external GPSDO clock [14]. In order to sam-

ple the same signal using the the three USRPs, we connect

the USRPs to the same antenna using a power splitter.

To be able to implement BigBand however, we had to ad-

dress the following USRP limitations:

7The number of times D-BigBand can average is = TW/T where T
is the FFT window time.

8

Mixer

4
0
 M

H
z

L
P

F

5
0
 M

H
z

L
P

F

4 GHz
100MHz

ADC
DigitalAmp

900MHz Bandwidth

Figure 7—SBX Daughterboard Schematic: The board can tune
to any frequency between 0.4 GHz to 4.4 GHz. After down-
conversion, the signal passes through a 40 MHz low pass filter
(LPF), an amplifier, and a 50 MHz LPF before the 100 MHz ADC.
The baseband circuit bandwidth is about 900 MHz. BigBand by-
passes both the 40 and 50 MHz LPFs to allow the baseband cir-
cuitry to receive 900 MHz.

• RF Frontend: The RF frontend of the SBX daughter-

board is designed to provide 40 MHz of bandwidth to a

low rate ADC. However, the goal of BigBand is to use RF

frontends that can pass a much larger bandwidth to the low

rate ADC. We achieve this by modifying the SBX RF re-

ceive chain, whose architecture is shown in the schematic

in Fig. 7. In particular, we bypass the 40MHz and 50MHz

filters shown in the schematic. This allows the USRP’s

ADC to receive the entire bandwidth that its analog front-

end circuitry is designed for. The ADC circuitry can re-

ceive at most 0.9 GHz. Once we bypass the filters, Big-

Band can use the SBX to sense 900 MHz, which will be

aliased to the 50 MHz bandwidth of the USRPs.

• Sampling rate: The USRP ADC has a sampling rate of

100 MHz. However, the USRP digital processing chain

cannot support 100 MS/s; the highest sampling rate it can

support is 50 MS/s.8 Further, the USRP has digital filters

but these can only produce sampling rates which are in-

teger dividers of 100 MS/s (i.e. 100/2, 100/3, 100/4, etc.).

Hence, for 0.9 GHz bandwidth, it is not possible with US-

RPs to get two aliasing filters that sample at 0.9/p1 and

0.9/p2 where p1 and p2 are co-prime. We can implement

the co-prime aliasing filters using commodity ADCs [5] as

explained in §4.1. However, this would require building a

new receiver that uses these ADCs. Instead, we implement

BigBand using three USRPs, all of which use 50 MS/s

aliasing filters. Our implementation of BigBand is more

constrained than our description in §4 since it does not in-

corporate co-prime aliasing filters. However, we can still

use it to resolve some collisions as we describe below.

7.1 Resolving Collisions without Co-prime Filters

Ideally, co-prime filters will allows us to resolve colli-

sions. However, three aliasing filters sampling at the same

rate with different time shifts allows us to solve collisions of

two frequencies. To see how, notice that in the 50 MHz alias-

ing filters in our implementation, 18 frequencies (900/50)
will hash together in one bucket since we are sensing a

900 MHz spectrum. Thus, two occupied frequencies f and

f ′ that collide in the same bucket can be one of
(

18
2

)

= 153

possibilities. For each of these possibilities, we have two un-

knowns which are the values (Xf andXf ′) of the two frequen-

8We use UHD to configure the USRP to transmit 16-bit ADC sam-
ples (8 bits each for I and Q) to the host so that we can receive 50
MS/s without saturating the Gigabit Ethernet.

cies. However, these values combine with a different phase

rotation in each of the three filters to give us three different

values of the same bucket:

b1j = Xf + Xf ′

b2j = Xf · ei2πfτ1/N + Xf ′ · ei2πf
′τ1/N

b3j = Xf · ei2πfτ2/N + Xf ′ · ei2πf
′τ2/N

(3)

where τ1 and τ2 are the time shifts of the second and third

filters relative to the first filter. Hence, for each possible pair

(f , f ′), we get an over-determined system with three linear

equations and two unknowns (Xf , Xf ′). This system will

have a solution only for the correct pair. Hence, by testing

all possibilities we can find the correct positions of f and f ′.

The previous discussion assumes that only two frequen-

cies collide in the two buckets. If more than 2 frequencies

collide, the equations above are extremely unlikely to have

any pairs (f , f ′) that will satisfy them. Thus, this system

also allows us to check for collisions, similar to the BigBand

scheme described in §4.3.9

Once we discover a collision of more than two frequencies

which we cannot solve, we set all frequencies that hash to the

bucket as occupied. This increases the number of false pos-

itive errors (i.e., unoccupied frequencies which are reported

as occupied) by at most 15 for each of these collisions. How-

ever, this avoids false negative errors (i.e., occupied frequen-

cies which are reported as unoccupied). In the context of

spectrum sensing, false negatives are more problematic since

they can result in interfering with ongoing transmissions.

7.2 Estimating the Channel and the Time Shifts

The earlier description of BigBand assumes that the values

of the frequencies are scaled similarly on all three USRPs.

Although the signals received at the three USRPs experience

the same wireless channel since they come from the same

antenna, they experience different channels on the hardware

and hence they are scaled differently. Specifically, if an oc-

cupied frequency f whose value is Xf hashes to bucket j and

does not collide, then the value of bucket j at each of the

USRPs can be written as:

b1j = hw(f) · h1(f) · Xf

b2j = hw(f) · h2(f) · Xf · ei2πfτ1/N

b3j = hw(f) · h3(f) · Xf · ei2πfτ2/N
(4)

where hw(f) is the wireless channel coefficient,

h1(f), h2(f), h3(f) are the hardware channels on each

of the USRPs, and ·(f) indicates that these parameters

are frequency dependent. hw(f) cancels out once we take

the ratios, b2j /b
1
j and b3j /b

1
j of the buckets. However, the

hardware channels are different and if we do not estimate

and compensate for them, we cannot perform frequency

estimation or detect collisions and solve them. In addition,

9Again, similar to the scheme in §4.3, we can solve for collisions
of three frequencies by adding a fourth filter. We will then have a
system of four equations and three unknowns, and so on.

9

-3

-2

-1

 0

 1

 2

 3

 4

 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4

U
n

w
ra

p
e

d
 P

h
a

s
e

Frequency Range in GHz

∆φ1-2
∆φ1-3

Figure 8—Phase rotation vs frequency: The figure shows that the
phase rotation between the 3 USRPs is linear across the 900 MHz
frequency spectrum and can be used to estimate the time shifts.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4

M
a

g
n

it
u

d
e

Frequency Range in GHz

|h1/h2|
|h1/h3|

Figure 9—Hardware channel magnitude: The relative channel
magnitudes |h1(f)/h2(f)| and |h1(f)/h3(f)| are not equal to 1 and
are not flat across the frequency spectrum. Hence, we need to com-
pensate for these estimates to be able to detect and solve collisions.

we also need to estimate the time shifts τ1, τ2 in order to

perform frequency estimation based on phase rotation.

To estimate the channels and the time shifts, we divide

the 900 MHz spectrum into 18 consecutive chunks of size

50 MHz. We then transmit a known signal in each chunk,

one by one. Since we only transmit in one chunk at a time,

there are no collisions at the receiver after aliasing. We then

use Eq. 4 to estimate the ratios h2(f) · ei2πfτ1/N/h1(f) and
h3(f) · ei2πfτ2/N/h1(f) for each f in the 900 MHz spectrum.

Now that we have the ratios, we need to compute

h2(f)/h1(f) for each frequency f , and the delay τ . We can

estimate this as follows: Both the magnitude and phase of the

hardware channel ratio will be different for different frequen-

cies. The magnitude differs with frequency because differ-

ent frequencies experience different attenuation in the hard-

ware. The phase varies linearly with frequency because all

frequencies experience the same delay τ , and the phase ro-

tation of a frequency f is simply 2πf τ/N. We can therefore

plot the phase of the ratio as a function of frequency, and

compute the delay τ from the slope of the resulting line.

Fig. 8 shows the phase result of this estimation. As ex-

pected, the phase is linear across the entire 900 MHz. Hence,

by fitting the points in Fig. 8 to a line we can estimate the

shifts τ1, τ2 and the relative phases of the hardware channels.
Fig. 9 also shows the relative magnitudes of the hardware

channels on the USRPs (i.e. |h1(f)/h2(f)| and |h1(f)/h3(f)|)
over the 900 MHz between 3.05 GHz and 3.95 GHz. These

hardware channels and time shifts are stable. We estimated

them only once at the set up time of the implementation.

7.3 Implementing D-BigBand

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0 5 10 15 20 25 30P
e

rc
e

n
ta

g
e

 o
f

W
ro

n
g

 E
s
ti
m

a
te

s

SNR per Bucket (SNR in dB)

Figure 10—The accuracy of BigBand’s frequency estimation:
The error is less than than 2% for signals 3dB above the noise floor
of each bucket. The error decreases to smaller than 0.5% if the SNR
per bucket is larger than 10dB.

D-BigBand’s frequency estimation relies on different co-

prime filters to vote on which frequency positions have

changed occupancy and hence we cannot implement D-

BigBand without co-prime ADCs. To verify that D-BigBand

can sense a non-sparse spectrum, we use multiple US-

RPs sampling adjacent narrowband chunks to capture a full

1 GHz of spectrum. However, since our testbed has only 20

USRPs, we divide them into 10 receivers and 10 transmit-

ters and capture 250 MHz at a time. We repeat this 4 times

at center frequencies that are 250 MHz apart and stitch them

together in the frequency domain to capture the full 1 GHz

spectrum. We then perform the inverse FFT to obtain a time

signal sampled at 1 GHz. We now subsample this time do-

main signal using co-prime aliasing filters with the following

sampling rates: 1/21, 1/20, 1/23 GHz, and run D-BigBand on

these subsampled versions of the signal.

8. EMPIRICAL RESULTS

In this section, we will evaluate the performance of Big-

Band and show that it can be used both for sensing and

receiving (i.e., decoding) sparse wideband signals. We also

evaluate D-BigBand and show that it can be used for sensing

even if the spectrum is not sparse.

8.1 Frequency Estimation as a Function of SNR

BigBand’s basic primitive is the estimation of the fre-

quency corresponding to a non-zero bucket by using the

phase rotation property. Such an estimate of the phase is sus-

ceptible to sample noise. However, BigBand has two mecha-

nisms that enhance its robustness to noise: averaging across

samples obtained from multiple ADCs, and rounding the ob-

tained frequency estimate to the nearest integer.10 In this ex-

periment, we verify the robustness of BigBand’s frequency

estimation as a function of SNR.

Method: We transmit signals in random frequency bins in

the range 3.05-3.95 GHz. We set the sparsity to 1% and the

FFT window to 1 ms. We vary the location of the receiver to

get a range of SNR per bucket between 3 dB and 30 dB.

10Frequency f estimated in bucket i must satisfy f = i mod B
where B is the number of buckets.

10

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 2 4 6 8 10P
e

rc
e

n
ta

g
e

 o
f

F
a

ls
e

 N
e

g
a

ti
v
e

s

Percentage of Spectrum Usage (Sparsity)

Figure 11—False negatives as a function of spectrum sparsity:
BigBand has an extremely low rate of false negatives. Its false neg-
ative rate is less than 0.2% with less than 6% spectrum occupancy,
and stays around 0.3% even when the spectrum occupancy grows
as large as 10%.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 2 4 6 8 10P
e

rc
e

n
ta

g
e

 o
f

F
a

ls
e

 P
o

s
it
iv

e
s

Percentage of Spectrum Usage (Sparsity)

Figure 12—False positives as a function of spectrum sparsity:
BigBand has a false positive rate of around 2% with 5% spectrum
occupancy, and stays below 14% even when spectrum occupancy
grows as large as 10%.

Results: Fig. 10 shows the percentage of frequencies that

are estimated incorrectly as a function of the SNR in each

bucket. The figure shows that the error is less than 2% for

SNR larger than 3 dB and less than 0.5% for SNR larger than

10 dB. This shows that frequency estimation using phase ro-

tation works across a large SNR range with little errors.

8.2 Evaluation of BigBand Spectrum Sensing

The primary motivation of BigBand is to be able to sense

sparse spectrum. In this section, we verify the range of spar-

sity for which BigBand works.

Method: We vary the sparsity in the 3.05 GHz to 3.95 GHz

range between 1% and 10% by transmitting from 5 different

USRPs. Each USRP transmits a signal whose bandwidth is at

least 1 MHz and at most 20 MHz. We randomize the band-

width and the center frequencies of the signals transmitted

by the USRPs. For each sparsity level, we repeat the experi-

ment 100 times with different random choices of bandwidth

and center frequencies. We run BigBand over a 1 ms FFT

window. We use two metrics:

• False Negatives: The fraction of occupied frequencies

that BigBand incorrectly reports as empty.

• False Positives: The fraction of empty frequencies that

BigBand incorrectly reports as occupied.

Results: Fig. 11 shows that BigBand has an extremely low

rate of false negatives, below 0.2% when the spectrum occu-

pancy is less than 5%; it stays below 0.3% even when the

spectrum occupancy goes up to 10%. The false negatives

 0

 20

 40

 60

 80

 100

 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3

O
c
c
u

p
a

n
c
y
 %

Frequency (GHz)

Occupancy from 2GHz to 3GHz (10 ms FFT window)

Figure 13—Spectrum Occupancy: The figure shows the aver-
age spectrum occupancy at our geographical location on Friday
01/15/2013 between 1-2pm:, as viewed at a 10 ms granularity. It
shows that the spectrum is sparsely occupied.

increase with spectrum occupancy since collision increases

and it becomes more probable that BigBand fails to detect

a collision. Compare this with today’s sequential scanning

techniques (e.g., RFeye [20]) which sense any particular fre-

quency for only 2% of the time and hence do not measure

that frequency for 98% of the time. As a result, they can miss

a significant percent of occupied frequencies.

Fig. 12 shows that the percentage of false positives of Big-

Band is less than 2% when the spectrum usage is below 5%.

The number of false positives increases as the spectrum us-

age increases, but stays below 14% even for spectrum us-

age as large as 10%. BigBand’s false positives increase as

spectrum usage increases because it takes a conservative ap-

proach that errs in favor of false positives rather than false

negatives. In particular, for each collision of 3 or more which

BigBand cannot decode, it sets all 18 frequencies that hash

to the bucket as occupied, which results in 15 additional false

positives.

We note a few points: First, real-world spectrum measure-

ments, for instance, in the Microsoft observatory, and in this

paper, reveal that actual spectrum usage is 2–5%, in which

regime BigBand’s false positives would be less than 2%.

Second, if the occupancy is high, causing the false positives

to exceed the desired threshold, one may use D-BigBand,

which deals with high occupancies (see results in §8.7.)

8.3 Outdoor Spectrum Measurements

This experiment shows that BigBand works in a real set-

ting, in particular, measuring outdoor spectrum usage.

Method: We collect outdoor measurements in a metropoli-

tan area from the roof top of a 24 floor building. We collect

measurements between 2 GHz and 2.9 GHz. Measurements

are collected using BigBand every 10 ms over a 30 min pe-

riod, i.e., we reconstruct the spectrum over an FFT window

of 10 ms. We then calculate the percentage of 10 ms win-

dows during which each frequency was occupied.

Results: Our results show that in our geographical area, be-

tween 2 GHz and 2.9 GHz, the spectrum usage is around

5%. These results were confirmed using a spectrum ana-

lyzer. Fig. 13 shows the fraction of time that each chunk of

spectrum between 2 GHz and 2.9 GHz is occupied, as re-

covered by BigBand. The figure shows that the spectrum is

11

FFT Window 2635-2640 MHz 2520-2530 MHz 2130-2140 MHz

10 µs 20% 64% 89%
100 µs 72% 78% 98%
1 ms 98% 87% 99%
10 ms 100% 100% 100%

Table 2—Occupancy vs FFT Measurement Window: Even fre-
quencies that seem always occupied over longer measurement win-
dows, are often likely to be detected as unoccupied when viewed
over shorter windows. This motivates the need for real-time spec-
trum sensing to take advantage of short term vacancies.

FFT Window BigBand 3 USRP Seq. Scan RFeye Scan
(900 MHz) (150 MHz) (20 MHz)

1 µs 1 µs 48 ms 22.5 ms
10 µs 10 µs 48 ms 22.5 ms
100 µs 100 µs 48 ms —
1 ms 1 ms 54 ms —
10 ms 10 ms 114 ms —

Table 3—Scanning time: BigBand is multiple orders of magnitude
faster than other technologies. This allows it to perform real-time
sensing to take advantage of even short term spectrum vacancies.

sparsely occupied and that most of the occupied frequencies

have 100% occupancy over the 30 min period, when viewed

at a 10 ms granularity.

However, if we zoom in and perform the sparse FFT every

100 µs (or more frequently) instead of every 10 ms over the

same period of 30 min, the spectrum occupancy changes. Ta-

ble 2 examines this phenomenon further by showing the oc-

cupancy of some frequency bands for various FFT measure-

ment windows. The occupancy of most frequencies drops, as

compared to the 10 ms window. This shows that while these

frequencies are occupied for some fraction of every 10 ms

interval, there is a large number of shorter windows during

these larger intervals where these frequencies are not occu-

pied. This implies that the spectrum is sparser at finer time

intervals, and provides more opportunities for fine-grained

spectrum reuse. Further, it motivates the need for fast spec-

trum sensing schemes to exploit these short-term vacancies.

8.4 BigBand vs. Spectrum Scanning

A key advantage of BigBand’s ability to use low-speed

ADCs for a wide band is that it can recover the band in one

shot, and does not have to sequentially scan it in narrowband

chunks. Hence, it reports spectrum occupancy in real time

and does not miss spectrum chunks that are occupied only

briefly. In this experiment, we compare the times taken by

different techniques to capture a 0.9 GHz wide spectrum.

Method: Most of today’s spectrum sensing equipment re-

lies on scanning. Even expensive, power hungry spectrum

analyzers typically capture a 100 MHz bandwidth in one

shot, and end up scanning to capture a larger spectrum [21].

The performance of sequentially scanning the spectrum re-

lies mainly on how fast the device can scan a GHz of band-

width. Here, we compare how fast it would take to scan the

900 MHz bandwidth using three techniques: state-of-the-art

spectrum monitors like the RFeye [20], which is used in the

Microsoft spectrum observatory, 3 USRPs sequentially scan-

ning the 900 MHz, or 3 USRPs using BigBand.

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

1

 0 2 4 6 8 10 12 14

B
it
 E

rr
o

r
R

a
te

Signal to Noise Ratio (dB)

BPSK

4QAM

Narrowband Receiver
BigBand Receiver

Figure 14—BigBand’s Decoding Performance: BigBand’s wide-
band receiver can decode sparse signals as efficiently as a narrow-
band receiver tuned to the transmitted signal across.

Results: Table 3 shows the results for different FFT win-

dow sizes. In all cases, BigBand takes exactly the time of

the FFT window to acquire the 900 MHz spectrum. The 3

USRPs combined can scan 150 MHz at a time and hence

need to scan 6 times to acquire the full 900 MHz. For FFT

window sizes lower than 10 ms, the scanning time is about

48 ms. Hence, the USRPs spend very little time actually

sensing the spectrum, which will lead to a lot of missed sig-

nals. Of course, state of the art spectrum monitors can do

much better. The RFeye Node has a fast scanning mode of

40 GHz/second [20]. It scans in chunks of 20MHz and there-

fore will take 22.5 ms to scan 900 MHz. Note that the RFeye

has a maximum resolution bandwidth of 20 KHz, and hence

cannot support any FFT windows larger than 50 µs.
Thus, in all cases, BigBand, which uses off-the-shelf com-

ponents, is several orders of magnitude faster than even ex-

pensive scanning based solutions, allowing it to detect short-

term spectrum vacancies.

8.5 Decoding Performance as a Function of SNR

The key metric of a receiver is its decoding efficiency as

a function of SNR. In this section, we compare the perfor-

mance of BigBand’s wideband receiver with a narrowband

receiver that is tuned to the transmitter.

Method: We use our wideband receiver consisting of 3 US-

RPs that are all centered at 3.5 GHz and receive 50 MS/s.

We transmit a sparse wideband signal by using 4 USRPs to

transmit 4 20 MHz OFDM signals. The 4 transmitter USRPs

are centered at the following frequencies: 3.215, 3.715, 3.44,

and 3.84 GHz. Note that the total occupied bandwidth of the

combined transmitted signal from all USRPs is 645 MHz.

Similar toWi-Fi, the transmitted OFDM symbols use 64 sub-

carriers and a cyclic prefix of 16 samples.

Since each receiver USRP can sample a maximum of 50

MHz, the three receiver USRPs together cannot sense or de-

code the complete received signal in the absence of BigBand.

With the BigBand receiver, the 645 MHz is aliased into the

50 MHz. We vary the location of the BigBand receiver to ob-

tain different SNRs and in each location we transmit and de-

code 25×106 OFDM symbols. We compare the performance

of BigBand with a traditional narrowband receiver that can

decode the signals from a single narrowband transmitter.

Results: Fig. 14 shows the BER vs. SNR curve that Big-

12

10
-4

10
-3

10
-2

10
-1

 0 5 10 15 20 25 30

P
a

c
k
e

t
L

o
s
s
 R

a
te

Number of Sensors

Figure 15—BigBand’s Packet Loss as a function of the number
of simultaneous transmitters: BigBand can decode as many as
30 simultaneous transmitters spread across a 900 MHz wide band,
while keeping the packet loss less than 3.5%.

Band achieves for both BPSK and 4-QAM modulation. The

figure also shows the curve for a standard narrowband re-

ceiver with one transmitter. The BER vs SNR curve for Big-

Band matches that of the narrowband receiver. This shows

that BigBand can decode wideband sparse signals at compa-

rable performance to a traditional narrowband receiver.

8.6 Decoding Multiple Transmitters using BigBand

In this section, we verify that BigBand can decode a large

number of transmitters. All the transmitters in our implemen-

tation use the same technology, but the result naturally gen-

eralizes to transmitters using different technologies.

Method:We use 10 USRPs to emulate up to 30 devices hop-

ping in a spectrum of 0.9 GHz. At any given time instant,

each device uses 1 MHz of spectrum to transmit a BPSK

signal. Similar to the Bluetooth frequency hopping standard,

we assume that there is a master that assigns a hopping se-

quence to each device that ensures that no two devices hop to

the same frequency at the same time instant. Note however,

that the hopping sequence for different devices might allow

them to hop to frequencies that get aliased to the same bucket

at a particular time instant, and hence collide in BigBand’s

50 MHz filter. Like in Bluetooth, each device hops 1, 3, or 5

times per packet, depending on the length of the packet.

Result: Fig. 15 shows the packet loss rate versus the num-

ber of devices hopping in the spectrum. The figure shows

that BigBand can decode the packets from 30 devices span-

ning a bandwidth of 900 MHz with a packet loss rate less

than 3.5%. Decoding all these sensors without using Big-

Band would either require a wideband 0.9 GHz receiver, or

a receiver with 30 RF frontends both of which would be sig-

nificantly more costly and power-hungry.

8.7 Evaluation of D-BigBand

In this section, we evaluate D-BigBand’s ability to sense

changes in spectrum occupancy independent of sparsity.

Method:We implement D-BigBandas described in §7.3. We

vary the percentage of total occupied frequencies in the spec-

trum between 1% (sparse) to 95% (almost fully occupied).

We then change the number of frequencies that change oc-

cupancy every 1 ms by up to 1% (i.e., 10 MHz), and evalu-

 0

 0.5

 1

 1.5

 2

 2.5

 0 10 20 30 40 50 60 70 80 90 100

P
e

rc
e

n
ta

g
e

 E
rr

o
r

Percentage of Spectrum Usage (Sparsity)

False Negative
False Positive

Figure 16—D-BigBand’s effectiveness as a function of Spec-
trum Sparsity: Over a band of 1 GHz, D-BigBandcan reliably de-
tect changes in spectrum occupancy even when the spectrum is 95%
occupied, as long as the change in spectrum occupancy is less than
1% every ms.

ate D-BigBand’s accuracy in identifying the frequencies that

change occupancy.

Results:As a function of spectrum occupancy, Fig. 16 shows

the percentage of false positives (i.e., frequencies whose oc-

cupancy has not changed, but BigBand erroneously declared

as changed) and false negatives (i.e., frequencies whose oc-

cupancy has changed, but BigBand erroneously declares

as unchanged). We see that BigBand can robustly identify

changes correctly even in a densely occupied network, with

both false positives and false negatives remaining under 2%

even at 95% occupancy.

9. CONCLUSION

This paper presents BigBand, a cheap and power efficient

system that enables GHz-wide sensing and decoding using

off-the-shelf hardware. Empirical evaluation demonstrated

that BigBand is able to sense the spectrum stably and dynam-

ically under different sparsity levels; we also demonstrate

BigBand’s effectiveness as a receiver to decode GHz-wide

sparse signals. We believe that BigBand enables multiple ap-

plications that would otherwise require expensive and power

hungry devices, e.g. realtime spectrum monitoring, dynamic

spectrum access, concurrent decoding of diverse techniques.

10. REFERENCES

[1] O. Abari et al. Performance trade-offs and design

limitations of analog-to-information converter

front-ends. In ICASSP, 2012.

[2] P. Bahl, R. Chandra, T. Moscibroda, R. Murty, and

M. Welsh. White space networking with wi-fi like

connectivity. In ACM SIGCOMM, 2009.

[3] T. Baykas et al. Developing a standard for TV white

space coexistence. Wireless Comm, IEEE, 19(1), 2012.

[4] D. Chen, S. Yin, Q. Zhang, M. Liu, and S. Li. Mining

spectrum usage data: a large-scale spectrum

measurement study. InMobicom, 2009.

[5] DigiKey, ADCs. http://www.digikey.com/.

[6] Ettus. Inc. USRP. http://ettus.com.

[7] FCC: NPRM (FCC 12-148). http://hraunfoss.fcc.gov/e

docs_public/attachmatch/FCC-12-148A1.pdf.

[8] FCC, Second Memorandum Opinion & Order 10-174.

13

[9] A. Gilbert, M. Muthukrishnan, and M. Strauss.

Improved time bounds for near-optimal space fourier

representations. In SPIE, 2005.

[10] H. Hassanieh, P. Indyk, D. Katabi, and E. Price. Nearly

optimal sparse fourier transform. In STOC, 2012.

[11] S. S. Hong and S. R. Katti. DOF: a local wireless

information plane. In ACM SIGCOMM, 2011.

[12] A. P. Iyer, K. Chintalapudi, V. Navda, R. Ramjee,

V. N. Padmanabhan, and C. R. Murthy. SpecNet:

spectrum sensing sans frontières. In NSDI, 2011.

[13] J. Laska, W. Bradley, T. Rondeau, K. Nolan, B.

Vigoda. Compressive sensing for dynamic spectrum

access networks: Techniques tradeoffs. DySPAN, 2011.

[14] Jackson Labs, Fury GPSDO. http://jackson-labs.com/.

[15] R. Lyons. Digital Signal Processing. 1996.

[16] M. A. McHenry. NSF spectrum occupancy

measurement project summary, 2005.

[17] Microsoft Spectrum Observatory. http://spectrum-obse

rvatory.cloudapp.net.

[18] H. Rahul, N. Kushman, D. Katabi, C. Sodini, and

F. Edalat. Learning to Share: Narrowband-Friendly

Wideband Networks. In ACM SIGCOMM, 2008.

[19] M. Rashidi, K. Haghighi, A. Panahi, and M. Viberg. A

NLLS based sub-nyquist rate spectrum sensing for

wideband cognitive radio. In DySPAN, 2011.

[20] RFeye Node. http://media.crfs.com/uploads/files/2/crf

s-md00011-c00-rfeye-node.pdf.

[21] Tektronix Spectrum Analyzer. http://tek.com.

[22] Texas Instruments, “12-bit, 1000 MSPS ADC with

analog input buffer.”. http://www.ti.com/.

[23] PCAST: Realizing the full potential of government

held spectrum to spur economic growth, 2012.

[24] J. Yoo, S. Becker, M. Loh, M. Monge, E. Candès, and

A. E-Neyestanak. A 100MHz–2GHz 12.5x subNyquist

rate receiver in 90nm CMOS. In IEEE RFIC, 2012.

[25] J. Yoo et al. A compressed sensing parameter

extraction platform for radar pulse signal acquisition.

JETCAS, 2012.

[26] S. Yoon, L. E. Li, S. Liew, R. R. Choudhury, K. Tan,

and I. Rhee. Quicksense: Fast and energy-efficient

channel sensing for dynamic spectrum access wireless

networks. In IEEE INFOCOM, 2013.

[27] T. Yucek and H. Arslan. A survey of spectrum sensing

algorithms for cognitive radio applications.

Communications Surveys Tutorials, IEEE, 11(1), 2009.

APPENDIX

Preliminaries:We use x and X to denote the time signal and

its frequency domain. In particular, we assume X has i.i.d.

Bernoulli distribution where for each i ∈ {0, . . . ,N − 1},
Xi ∈ {0, ai} such that the sparsity is E[|‖X‖0)|] = K. We

also assume there exists two co-prime integers p1 and p2 that

divide N such that p1 = Θ(p2) and N/p1 = O(K). Due to

limited space, we will provide here a proof for the noiseless

case with K = c
√
N. The proof for the noisy case and for

K < c
√
N will be later provided in a technical report.

LEMMA .1. Given two aliasing filters with B1 = N/p1
and B2 = N/p2 buckets such that p1 and p2 are co-prime

integers that divide N, then for any two frequencies f 6= f ′,

we have: f ′ = f mod B1 → f ′ 6= f mod B2.

PROOF. Assume f ′ 6= f mod N, but they are equal

both modulo B1 and B2. Consequently, they are equal

modulo the least common multiple: lcm(B1,B2). Note that

lcm(B1,B2) = lcm(N/p1,N/p2) = N since p1, p2 are co-

prime, which is a contradiction.

LEMMA .2. The probability that any of the collision de-

tection tests invoked by BigBand is incorrect is at most

O(1/N(a−5)/2) for some constant a > 5.

PROOF. This proof is omitted due to space limitation.

However, we show that the probability that collision is mis-

taken for a single frequency is very small and then take the

union bound over
√
N logN collision tests.

LEMMA .3. For, any constant α, assuming that all col-

lision detection tests are correct, the algorithm reports the

correct output with probability at least 1− O(α).

PROOF. Given Lemma .1, the algorithm fails if there is

a sequence of occupied frequencies f1, g1, f2, g2 . . . ft that

forms a “deadlock” i.e. for each i ≥ 1, fi and gi collide

in the first bucketization (i.e. fi = gi mod B1), while gi
and fi+1 collide in the second bucketization (i.e. gi = fi+1

mod B2). Moreover, it must be the case that either the se-

quence “loops around”, i.e., f1 = ft, or t > tmax, where

tmax = C logN is the number of iterations. We focus on the

first case, the second one is similar. Define Et as the event

that such sequence exists. The number of such sequences

is at most
√
N

2(t−1)
, while the probability that the entries

corresponding to a specific sequence are non-zero is at most

(K/N)2(t−1) = (c/
√
N)2(t−1). Thus the probability of Et is at

most c2(t−1). Therefore, the probability that one of the events

E1 . . .Etmax
holds is at most

∑

∞

t=3 c
2(t−1) = c4/(1 − c2),

which is smaller than α for c small enough.

THEOREM .4. For K = c
√
N and p1, p2 = Θ(

√
N), the

algorithm BIGBAND runs in time O(K logN), uses O(K)
samples and returns the correct result with probablility at

least 1− O(α) as long as c is a small enough constant.

PROOF. From Lemma .3 and Lemma .2, the algorithm re-

turns the correct vectorXwith probability at least 1−O(α)−
O(N−(a−5)/2) = 1 − O(α) for a > 5. The algorithm uses

only O(B1 + B2) = O(K) samples of x. The running time is

bounded by the time needed to perform O(1) bucketizations
(i.e. FFT of sizes B1 and B2), and O(logN) invocations of
the estimation. Both components take time O(K logN).

14

	introduction
	Related Work
	Illustrative Examples
	One Non-Zero Frequency
	Three Non-Zero Frequencies

	BigBand
	Frequency Bucketization with Co-prime Aliasing
	Frequency Estimation with Phase Rotation
	Detecting Frequency Collisions
	BigBand's Sparse FFT Algorithm
	Sparsity Range

	Sensing Non-Sparse Spectrum
	Illustrative Example
	D-BigBand

	BigBand vs sFFT
	A USRP-Based Implementation
	Resolving Collisions without Co-prime Filters
	Estimating the Channel and the Time Shifts
	Implementing D-BigBand

	Empirical Results
	Frequency Estimation as a Function of SNR
	Evaluation of BigBand Spectrum Sensing
	Outdoor Spectrum Measurements
	BigBand vs. Spectrum Scanning
	Decoding Performance as a Function of SNR
	Decoding Multiple Transmitters using BigBand
	Evaluation of D-BigBand

	Conclusion
	References

